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Monte Carlo Methods

# a class of computational algorithms that rely on repeated

random sampling to compute their results.

# tend to be used when it is infeasible to compute an exact

result with a deterministic algorithrn

# was coined in the 1940s by John von Neumann, Stanislaw

Ulam and Nicholas Metropolis

Games of Chance




Monte Carlo Methods to Calculate Pi

# Computer Simulation
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o N: # points inside the square
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o m: # line crossings




Typical Outputs with Simulation
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Problems to be Solved
& Sampling

0 to generate a set of samples {2}/, from a given probability
distribution p(z)
a the distribution is called target distribution

o can be from statistical physics or data modeling

& Integral

o To estimate expectations of functions under this distribution




Use Sample to Estimate the Target Dist.

# Draw a set of independent samples (a hard problem)
vi<i<L, zY ~ p(2)

# Estimate the target distribution as count frequency
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Basic Procedure of Monte Carlo Methods

# Draw a set of independent samples p(2) f(2)
Vi<i<L, zV ~ p(2)

# Approximate the expectation with
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Points as the Bins

0 Why this is good?
A 1

B(f] =E[f] varlf] = 7EI(f — E[f)’]

o Accuracy of estimator does not depend on dimensionality of z

o High accuracy with few (10-20 independent) samples

a However, obtaining independent samples is often not casy!
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Why Sampling iIs Hard?

& Assumption

o The target distribution can be evaluated, at least to within a

multiplicative constant, i.e.,

p(z) =p*(z)/Z
a where p*(z) can be evaluated
# Two difficulties

o Normalizing constant is typically unknown

o Drawing samples in high—dimensional space is challenging




A Simple Example

& Draw samples from a discrete distribution with a finite set of
uniformly distributed points
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# We can compute the distribution via
z=3% 0  pi=pi/Z

& ... then draw sarnples from the multinomial distribution

4

# But, the cost grows exponentially with dimension!




Basic Sampling Algorithms

& Strategies for generating samples from a given standard

distribution, e.g., Gaussian

# Assume that we have a pseudo—random generator for uniform
distribution over (0, 1)

# For standard distributions we can tmnsform uniformly

distributed samples into desired distributions




Basic Sampling Algorithms
# If z is uniformly distributed over (0, 1), then y = f(2) has the

distribution
dz ‘
dy

p(y) = p(2)
2 where p(z) =1

# Normally, we know p(y) and infer f. This can be done via

y=h""(z)

# So we have to transform uniformly distributed random numbers

0 using a function which is the inverse of the indefinite integral of the
distribution




Geometry of Transformation

& Generating non-uniform random variables
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@ h(y) is indefinite integral of desired p(y)
@ z ~ Uniform(0, 1) is transformed using y = h™'(2)

# Results in y being distributed as p(v)




Example #1

# How to get the exponential distribution from uniform

variable?

p(y) = Aexp(—Ay)

# Do the integral, we get

# Thus




Example #2

# How to get the standard normal distribution from uniform

variable?

# Thus




Example #2: Box-Muller for Gaussian

# E Xample of a bivariate Gaussian

o) = [0 (- ) [ (- 2]

# Generate pairs of uniformly distributed random numbers
21, 2z ~ Uniform(—1,1)
# Discard each pair unless
zf + z% <1

# Leads to uniform distribution of points inside unit circle with
1

1
p(Z1,Z2) — ;




Example #2: Box-Muller for Gaussian

# E valuate the two quantities

—211121 1/2 . —2111252 1/2
91221( 2 ) 92—22( 2 )

o where 7% = 27 + 25
# Then, we have independent standard normal distribution

ron ) = [z (= )] [ o0 (- 30)]

# How about non-zero means and non-standard variance?

# How about multivariate Gaussian?




Rejection Sampling

# Problems with transformation methods
a depend on ability to calculate and then invert indefinite integral

o feasible only for some standard distributions

# More general strategy 1s needed
o Rejection sampling and importance sampling are limited to

univariate distributions

Although not applicable to complex problems, they are important

components 1n more general strategies

o Allows sampling from complex distributions




Rejection Sampling
# Wish to sample from distribution p(2)

# Suppose we are able to easily evaluate p(z) for any given value

of z

# Samples are drawn from simple distribution, called proposal
distribution ¢(z)

# Introduce constant k whose value is such that kq(z) > p(2) for
all z

o Called comparison function




Rejection Sampling
4 Samples are drawn from simple distribution q(2)

# Rejected if they fall in grey area between p(z) and kq(2)

kq(zo0)

# Resulting samples are distributed according to p(z) which is

the normalized version of P(?)




How to determine If sample is In
shaded region?

# E ach step involves generating two random numbers
20 ~ ¢(2) uo ~ Uniform(0, kq(2o))
# This pair has uniform distribution under the curve of
function kq(z)
# If uo > p(20) the pair is rejected otherwise it is retained

# Remaining pairs have a uniform distribution under the curve
of p(2) and hence the corresponding 7z values are distributed

according to p(z) as desired

@ Proof?




More on Rejection Sampling
# The probability that a sample will be accepted (accept ratio)

p(accept) = /q(z) X p(z) dz = %/ﬁ(z)dz

kQ(ZU)

J

# To have high accept ratio, k should be as small as possible

o ... butit needs to satisfy
kq(z) > p(z) Vz




Curse of Dimensionality

# Consider two univariate Gaussian distributions

# What is k?
11 -

. . k — _“a
o At the origin, we have Vonoe  Varo, »5° k

Op

o How about in 1000 dimensions?

1000
k= (ﬁ) ~ 20,000 if o4 = 1.010,

Op




Adaptive Rejection Sampling

# When difficult to find suitable analytic distribution

# Straight-forward when p(z) is log concave

o When Inp(z) has derivatives that are non-increasing functions of

VA
o Function Inp(z) and gradients are evaluated at set of grid points

o Intersections are used to construct envelope 9 a sequence of

linear functions .

Inp(z)




Importance Sampling

# E valuating expectation of f(z) with respect to distributiorp(z)

from which it is difticult to draw samples directly
4 Samples {2} are drawn from simpler distribution ¢(z)

()
# Terms in summation are weighted by ratios p EZ W%
q(z




Importance Sampling

# The expectation can be computed as

5lf) = [ 1@z = [ 1) )i

# Use Monte Carlo methods
| L
~ (1)
E[f] 7 ;:1 rif(z\")

o where the importance Weights are

p(z")
q(z")

T =

o and the samples are

z) ~ q(z)




Importance Sampling

# For unnormalized distributions

@ We have E[f] = /f :_/f

Zg 1 p’(z(l))
frlf( ) where 7] = =
Z, L 2= 3(20)

A

L

1 . D(Z 1 .
& The ratio ZZ — 7, /p(z)dz — /EEZ;Q(Z)dZ ~ 7 Z’rl
# Then, the expectation is

Elf] =

L
R~ Zwlf(z(l)), where w; =




Problems with Importance Sampling

# As with Rejection sampling, the performance depends

crucially on how well the proposal matches the target

o a lot of wastes in the areas where p(z)f(2) is small

0 more serious in high dimensional spaces




Summary so far ...

# Monte Carlo methods use samples to estimate expectations

# Rejection sampling and importance sampling are useful when

no closed-form transformation is available or is hard

# But they can be inefficient in high—dimensional spaces

= only works well when the proposal approximate the target well




Markov Chain Monte Carlo (MCMC)

# As with rejection and importance sampling, it samples from a

proposal distribution

# But, it maintains a record of z", and the proposal distribution

depends on current state ¢(z|z")

# It’s not necessary for the proposal to look at all similar to the

target

# The sequence z) 72 forms a Markov chain

& Configurable components:
o Proposal distribution

m) Accept strategy




Geometry of MCMC

& Proposal depends on current state
# Not necessarily similar to the target

# Can evaluate the un-normalized target

gt




Metropolis Algorithm

# Proposal distribution is symmetric
q(z|z") = q(2'|2)

# The candidate sample z" is accepted with probability

b (T p(z") )
A(z*,z'") = min (1, 5(2)
o The acceptance can be done by
draw a random u ~ Uniform((), 1)
accepting the sample if A(z", Z(T)) > u

(T4+1) _ z* (7+1) _ Z(T)

# It sample is accepted, set z ; otherwise z

& Note: zV.z? .. . isnota set of independent samples




Geometry of Metropolis Algorithm

4 Sample from Gaussian distribution with the proposal being an
isotropic Gaussian with std 0.2.

# Green: accepted steps; Red: rejected steps
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Properties of Markov Chains

® z(D 2z zM) is a first-order Markov chain it conditional
independence property holds

z(m+1)|z(1),. Z(m)) — p(z(m+1)|z(m))

4
# Transition probabilities T (2™, 2(mH)Y) & p(g(mt1)|5(m)

LR

# It T, are the same for all m, it is Homogeneous Markov chain
# p*(z) satisties the detailed balance it

b (2)T(2.7) = p* (&)T(@ 2)
# It p*(z) satisties the detailed balance, then it’s invariant

p*(z) =Y T(,2)p"(2)

(stationary)

# A chain is ergodic if it converges to the invariant distribution,
irrespective of the initial distribution




Metropolis-Hasting Algorithm

& A generalization of the Metropolis algorithm to the case

where the proposal distribution is no longer symmetric

# Draw sample z" ~ 41 (2|z”) and accept it with probability

~ (% (T) | %
e B )
Ap(z*,2'"’) = min (1’ﬁ(z(7))qk(z*|z(7)))

@ We can show p(z) is an invariant distribution of MC defined
by MH algorithm, by showing the detailed balance

p(2)qx('|2) A (2!, 2) = min (p(2)qx(2'|2), p(2 )ax(z]2") )

= min (p(z)ax(2]2'), p(2)ai (7 |2))

p(z)qx(z'|z) )
p(z')qr (z|2z’)
= p(z')qx (2|2') Ak (2, 2')

= p(2)qu(zlz') min (1.




Issues with Proposal Distribution

# Proposal: isotropic Gaussian (blue) centered at current state

Oma.x

O'mik

2 Small p leads to high accept rate, but progress through the state

space takes a long time due to random walk
a Large p leads to high rejection rate
0 Roughly best choice:

P =~ Omin




Gibbs Sampling
# A special case of Metropolis—Hastings algorithm

# Consider the distribution p(z) = p(z1,...,2:)

# Gibbs sampling performs the follows
o Initialize {z;:i=1,..., M}
a For 7=1,...,T

Sample Z§T+1) ~ p(Zl |Z§T)? Z:gT)j ceey ZE\Z))
Sample Z(T+ ) (ZJ ‘Zgr_l_l), e ey Z§_1 ) j(:—)l’ R Z](\Zf))
Sample zﬁffﬂ) ~ p(Zj |Z§T+1)a ng'-Fl)’ SR 5\2’_{_?)




Geometry of Gibbs Sampling

# The target distribution in 2 dimensional space

Lo




Geometry of Gibbs Sampling

angl) is sampled from P(x; |$g))

b/

# Starting from a state x(%)

L9




Geometry of Gibbs Sampling

# A sample is drawn from P (x5 xgtﬂ))

L2

this finishes one single iteration.




Geometry of Gibbs Sampling

# After a few iterations

L2




Gibbs Sampling

# How to show Gibbs sampling samples from p(z) ?

a show that p(z) is an invariant distribution at each sample steps
The marginal p(z_;) is invariant as Z_; is unchanged
Also, the conditional p(2;|Z_;) is correct
Thus, the joint distribution p(ZZ' z_;) p(Z_i) is invariant at each step
o the Markov chain is ergodic

A sufficient condition is that none of the conditional distributions be

anywhere Zero

If the requirement is not satisfied (some conditionals have zeros),

ergodicity must be proven explicitly




Gibbs Sampling
# a special case of Metropolis—Hastings algorithm

# Consider a MH sampling step involving variable zr in which

other variables Zz—x remain fixed
# The transition probability is
qr(z"|z) = p(z|z—k)
# Note that z*, =z« and p(z) = p(zk|2—k)p(z—)
# Then, the MH acceptance probability is

p(z*)qx(z]z") p(z|z™ 1 )p(2" 1 )p(2k |27 )

p(z)ar(z*|z) — p(erlz—i)p(z_r)p(zlz_r) !

A(z",z) =

0 always accepted!




Behavior of Gibbs Sampling

# Correlated Gaussian: marginal distributions of width L

and conditional distributions of width i




sSummary

# Monte Carlo methods are power tools that allow one to
implement any distribution in the form

p(x) =p*(x)/Z
# Monte Carlo methods can answer Virtually any query related to
by putting the query in the form

[ feomix = > )

# In high-dimensional problems the only satistactory methods are
those based Markov chain Monte Carlo: Metropolis-Hastings and
Gibbs sampling

4 Simple Metropolis and Gibbs sampling algorithms, although
widely used, may sutfer from slow random walk. More
sophisticated algorithms are needed.




Sampling and EM Algorithm

# General procedure of the EM algorithm
o E-step: compute the expected complete-data log—likelihood

Q(6,6°) / p(ZIX, 6°9) In p(X, Z|9)dZ

o M-step: update model parameters

0" = argmax (6, 6°)

@ Sampling methods can be applied to approximate the integral
in E—step
o called Monte Carlo EM algorithm

Q(0,6°%) ~ Zlnp (X,Z116)
l 1
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