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Monte Carlo Methods

a class of computational algorithms that rely on repeated 

random sampling to compute their results.

tend to be used when it is infeasible to compute an exact 

result with a deterministic algorithm

was coined in the 1940s by John von Neumann, Stanislaw 

Ulam and Nicholas Metropolis

Games of Chance



Monte Carlo Methods to Calculate Pi

Computer Simulation

 N: # points inside the square

 m: # points inside the circle

Bufffon’s Needle Experiment

 m: # line crossings



Typical Outputs with Simulation



Problems to be Solved 

Sampling

 to generate a set of samples                 from a given probability 

distribution

 the distribution is called target distribution

 can be from statistical physics or data modeling

Integral

 To estimate expectations of functions under this distribution



Use Sample to Estimate the Target Dist.

Draw a set of independent samples (a hard problem)

Estimate the target distribution as count frequency

Histogram with Unique

Points as the Bins



Basic Procedure of Monte Carlo Methods

Draw a set of independent samples

Approximate the expectation with

 where is the distribution p?

 why this is good?

 Accuracy of estimator does not depend on dimensionality of z

 High accuracy with few (10-20 independent) samples

 However, obtaining independent samples is often not easy!

Histogram with Unique

Points as the Bins



Why Sampling is Hard?

Assumption

 The target distribution can be evaluated, at least to within a 

multiplicative constant, i.e., 

 where           can be evaluated 

Two difficulties

 Normalizing constant is typically unknown

 Drawing samples in high-dimensional space is challenging



A Simple Example

Draw samples from a discrete distribution with a finite set of 
uniformly distributed points

We can compute the distribution via

… then draw samples from the multinomial distribution

But, the cost grows exponentially with dimension!



Basic Sampling Algorithms

Strategies for generating samples from a given standard 

distribution, e.g., Gaussian

Assume that we have a pseudo-random generator for uniform 

distribution over (0,1)

For standard distributions we can transform uniformly 

distributed samples into desired distributions



Basic Sampling Algorithms

If z is uniformly distributed over (0, 1), then                has the 
distribution

 where 

Normally, we know p(y) and infer f. This can be done via

So we have to transform uniformly distributed random numbers
 using a function which is the inverse of the indefinite integral of the 

distribution



Geometry of Transformation

Generating non-uniform random variables

is indefinite integral of desired 

is transformed using

Results in y being distributed as 



Example #1

How to get the exponential distribution from uniform 

variable?

Do the integral, we get

Thus



Example #2

How to get the standard normal distribution from uniform 

variable?

Do the integral, we get

Thus

No closed form!!



Example #2: Box-Muller for Gaussian 

E  xample of a bivariate Gaussian

Generate pairs of uniformly distributed random numbers

Discard each pair unless

Leads to uniform distribution of points inside unit circle with



Example #2: Box-Muller for Gaussian 

E  valuate the two quantities

 where

Then, we have independent standard normal distribution 

How about non-zero means and non-standard variance?

How about multivariate Gaussian?



Rejection Sampling

Problems with transformation methods

 depend on ability to calculate and then invert indefinite integral

 feasible only for some standard distributions

More general strategy is needed

 Rejection sampling and importance sampling are limited to 

univariate distributions

 Although not applicable to complex problems, they are important 

components in more general strategies

 Allows sampling from complex distributions



Rejection Sampling

Wish to sample from distribution 

Suppose we are able to easily evaluate for any given value 

of z

Samples are drawn from simple distribution, called proposal 

distribution

Introduce constant k whose value is such that                     for 

all z

 Called comparison function



Rejection Sampling

Samples are drawn from simple distribution

Rejected if they fall in grey area between          and

Resulting samples are distributed according to p(z) which is 

the normalized version of



How to determine if sample is in

shaded region?

E  ach step involves generating two random numbers

This pair has uniform distribution under the curve of 

function

If                  the pair is rejected otherwise it is retained

Remaining pairs have a uniform distribution under the curve 

of         and hence the corresponding z values are distributed 

according to         as desired

Proof?



More on Rejection Sampling

The probability that a sample will be accepted (accept ratio)

To have high accept ratio, k should be as small as possible

 … but it needs to satisfy



Curse of Dimensionality

Consider two univariate Gaussian distributions

What is k?

 At the origin, we have                              , so

 How about in 1000 dimensions?



Adaptive Rejection Sampling

When difficult to find suitable analytic distribution

Straight-forward when is log concave

 When            has derivatives that are non-increasing functions of 

z

 Function and gradients are evaluated at set of grid points

 Intersections are used to construct envelope  a sequence of 

linear functions



Importance Sampling

E  valuating expectation of f(z) with respect to distribution 

from which it is difficult to draw samples directly

Samples are drawn from simpler distribution

Terms in summation are weighted by ratios



Importance Sampling

The expectation can be computed as

Use Monte Carlo methods

 where the importance weights are

 and the samples are



Importance Sampling

For unnormalized distributions

We have

The ratio

Then, the expectation is



Problems with Importance Sampling

As with Rejection sampling, the performance depends 

crucially on how well the proposal matches the target

 a lot of  wastes in the areas where               is small

 more serious in high dimensional spaces



Summary so far …

Monte Carlo methods use samples to estimate expectations

Rejection sampling and importance sampling are useful when 

no closed-form transformation is available or is hard

But they can be inefficient in high-dimensional spaces

 only works well when the proposal approximate the target well



Markov Chain Monte Carlo (MCMC)

As with rejection and importance sampling, it samples from a 

proposal distribution

But, it maintains a record of     , and the proposal distribution        

depends on current state

It’s not necessary for the proposal to look at all similar to the 

target 

The sequence                     forms a Markov chain

Configurable components:

 Proposal distribution

 Accept strategy



Geometry of MCMC

Proposal depends on current state

Not necessarily similar to the target

Can evaluate the un-normalized target 



Metropolis Algorithm

Proposal distribution is symmetric

The candidate sample      is accepted with probability

 The acceptance can be done by

 draw a random 

 accepting the sample if 

If sample is accepted, set                   ; otherwise 

Note: is not a set of independent samples



Geometry of Metropolis Algorithm

Sample from Gaussian distribution with the proposal being an 
isotropic Gaussian with std 0.2. 

Green: accepted steps; Red: rejected steps



Properties of Markov Chains

is a first-order Markov chain if conditional 
independence property holds

Transition probabilities

If       are the same for all m, it is Homogeneous Markov chain

satisfies the detailed balance if

If          satisfies the detailed balance, then it’s invariant 
(stationary)

A chain is ergodic if it converges to the invariant distribution, 
irrespective of the initial distribution



Metropolis-Hasting Algorithm

A generalization of the Metropolis algorithm to the case 

where the proposal distribution is no longer symmetric

Draw sample                        and accept it with probability

We can show        is an invariant distribution of MC defined 

by MH algorithm, by showing the detailed balance



Issues with Proposal Distribution

Proposal: isotropic Gaussian (blue) centered at current state

 Small    leads to high accept rate, but progress through the state 

space takes a long time due to random walk

 Large    leads to high rejection rate

 Roughly best choice: 



Gibbs Sampling

A special case of Metropolis-Hastings algorithm

Consider the distribution

Gibbs sampling performs the follows

 Initialize

 For 

 Sample

 Sample

 Sample



Geometry of Gibbs Sampling

The target distribution in 2 dimensional space



Geometry of Gibbs Sampling

Starting from a state        ,            is sampled from



Geometry of Gibbs Sampling

A sample is drawn from 

this finishes one single iteration.



Geometry of Gibbs Sampling

After a few iterations



Gibbs Sampling

How to show Gibbs sampling samples from        ? 

 show that p(z) is an invariant distribution at each sample steps

 The marginal               is invariant as         is unchanged

 Also, the conditional                   is correct

 Thus, the joint distribution                               is invariant at each step

 the Markov chain is ergodic

 A sufficient condition is that none of the conditional distributions be 

anywhere zero

 If the requirement is not satisfied (some conditionals have zeros), 

ergodicity must be proven explicitly



Gibbs Sampling

a special case of Metropolis-Hastings algorithm

Consider a MH sampling step involving variable      in which 

other variables         remain fixed

The transition probability is

Note that                   and

Then, the MH acceptance probability is

 always accepted!



Behavior of Gibbs Sampling

Correlated Gaussian: marginal distributions of width L

and conditional distributions of width



Summary

Monte Carlo methods are power tools that allow one to 
implement any distribution in the form

Monte Carlo methods can answer virtually any query related to    
by putting the query in the form

In high-dimensional problems the only satisfactory methods are 
those based Markov chain Monte Carlo: Metropolis-Hastings and 
Gibbs sampling

Simple Metropolis and Gibbs sampling algorithms, although 
widely used, may suffer from slow random walk. More 
sophisticated algorithms are needed.



Sampling and EM Algorithm

General procedure of the EM algorithm

 E-step: compute the expected complete-data log-likelihood

 M-step: update model parameters

Sampling methods can be applied to approximate the integral 

in E-step

 called Monte Carlo EM algorithm 
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